| calibrate.qrrvglm.control {VGAM} | R Documentation |
Control Function for CQO/CAO Calibration
Description
Algorithmic constants and parameters for running
calibrate.qrrvglm are set using this function.
Usage
calibrate.qrrvglm.control(object, trace = FALSE, method.optim = "BFGS",
gridSize = ifelse(Rank == 1, 21, 9), varI.latvar = FALSE, ...)
Arguments
object |
The fitted CQO/CAO model. The user should ignore this argument. |
trace |
Logical indicating if output should be produced for each iteration.
It is a good idea to set this argument to be |
method.optim |
Character. Fed into the |
gridSize |
Numeric, recycled to length |
varI.latvar |
Logical. For CQO objects only, this argument is fed into
|
... |
Avoids an error message for extraneous arguments. |
Details
Most CQO/CAO users will only need to make use of trace
and gridSize. These arguments should be used inside their
call to calibrate.qrrvglm, not this function
directly.
Value
A list which with the following components.
trace |
Numeric (even though the input can be logical). |
gridSize |
Positive integer. |
varI.latvar |
Logical. |
Note
Despite the name of this function, CAO models are handled as well.
References
Yee, T. W. (2020). On constrained and unconstrained quadratic ordination. Manuscript in preparation.
See Also
calibrate.qrrvglm,
Coef.qrrvglm.
Examples
## Not run: hspider[, 1:6] <- scale(hspider[, 1:6]) # Needed for I.tol=TRUE
set.seed(123)
p1 <- cqo(cbind(Alopacce, Alopcune, Pardlugu, Pardnigr,
Pardpull, Trocterr, Zoraspin) ~
WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,
family = poissonff, data = hspider, I.tol = TRUE)
sort(deviance(p1, history = TRUE)) # A history of all the iterations
siteNos <- 3:4 # Calibrate these sites
cp1 <- calibrate(p1, trace = TRUE,
new = data.frame(depvar(p1)[siteNos, ]))
## End(Not run)
## Not run:
# Graphically compare the actual site scores with their calibrated values
persp(p1, main = "Site scores: solid=actual, dashed=calibrated",
label = TRUE, col = "blue", las = 1)
abline(v = latvar(p1)[siteNos], col = seq(siteNos)) # Actual site scores
abline(v = cp1, lty = 2, col = seq(siteNos)) # Calibrated values
## End(Not run)