bilogistic {VGAM} | R Documentation |
Bivariate Logistic Distribution Family Function
Description
Estimates the four parameters of the bivariate logistic distribution by maximum likelihood estimation.
Usage
bilogistic(llocation = "identitylink", lscale = "loglink",
iloc1 = NULL, iscale1 = NULL, iloc2 = NULL, iscale2 =
NULL, imethod = 1, nsimEIM = 250, zero = NULL)
Arguments
llocation |
Link function applied to both location parameters
|
lscale |
Parameter link function applied to both
(positive) scale parameters |
iloc1 , iloc2 |
Initial values for the location parameters.
By default, initial values are chosen internally using
|
iscale1 , iscale2 |
Initial values for the scale parameters.
By default, initial values are chosen internally using
|
imethod |
An integer with value |
nsimEIM , zero |
See |
Details
The four-parameter bivariate logistic distribution has a density that can be written as
f(y_1,y_2;l_1,s_1,l_2,s_2) = 2 \frac{\exp[-(y_1-l_1)/s_1 -
(y_2-l_2)/s_2]}{
s_1 s_2 \left( 1 + \exp[-(y_1-l_1)/s_1] + \exp[-(y_2-l_2)/s_2]
\right)^3}
where s_1>0
and s_2>0
are the scale parameters,
and l_1
and l_2
are the location parameters.
Each of the two responses are unbounded, i.e.,
-\infty<y_j<\infty
.
The mean of Y_1
is l_1
etc.
The fitted values are returned in a 2-column matrix.
The cumulative distribution function is
F(y_1,y_2;l_1,s_1,l_2,s_2) =
\left( 1 + \exp[-(y_1-l_1)/s_1] + \exp[-(y_2-l_2)/s_2]
\right)^{-1}
The marginal distribution of Y_1
is
P(Y_1 \leq y_1) = F(y_1;l_1,s_1) =
\left( 1 + \exp[-(y_1-l_1)/s_1] \right)^{-1} .
By default, \eta_1=l_1
,
\eta_2=\log(s_1)
,
\eta_3=l_2
,
\eta_4=\log(s_2)
are the linear/additive
predictors.
Value
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
rrvglm
and vgam
.
Author(s)
T. W. Yee
References
Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association, 56, 335–349.
Castillo, E., Hadi, A. S., Balakrishnan, N. and Sarabia, J. S. (2005). Extreme Value and Related Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Examples
## Not run:
ymat <- rbilogis(n <- 50, loc1 = 5, loc2 = 7, scale2 = exp(1))
plot(ymat)
bfit <- vglm(ymat ~ 1, family = bilogistic, trace = TRUE)
coef(bfit, matrix = TRUE)
Coef(bfit)
head(fitted(bfit))
vcov(bfit)
head(weights(bfit, type = "work"))
summary(bfit)
## End(Not run)