| betaII {VGAM} | R Documentation |
Beta Distribution of the Second Kind
Description
Maximum likelihood estimation of the 3-parameter beta II distribution.
Usage
betaII(lscale = "loglink", lshape2.p = "loglink",
lshape3.q = "loglink", iscale = NULL, ishape2.p = NULL,
ishape3.q = NULL, imethod = 1,
gscale = exp(-5:5), gshape2.p = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
Arguments
lscale, lshape2.p, lshape3.q |
Parameter link functions applied to the
(positive) parameters |
iscale, ishape2.p, ishape3.q, imethod, zero |
See |
gscale, gshape2.p, gshape3.q |
See |
probs.y |
See |
Details
The 3-parameter beta II is the 4-parameter
generalized beta II distribution with shape parameter a=1.
It is also known as the Pearson VI distribution.
Other distributions which are special cases of the 3-parameter
beta II include the Lomax (p=1) and inverse Lomax
(q=1). More details can be found in Kleiber and Kotz
(2003).
The beta II distribution has density
f(y) = y^{p-1} / [b^p B(p,q) \{1 + y/b\}^{p+q}]
for b > 0, p > 0, q > 0, y \geq 0.
Here, b is the scale parameter scale,
and the others are shape parameters.
The mean is
E(Y) = b \, \Gamma(p + 1) \,
\Gamma(q - 1) / (\Gamma(p) \, \Gamma(q))
provided q > 1; these are returned as the fitted values.
This family function handles multiple responses.
Value
An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm,
and vgam.
Note
See the notes in genbetaII.
Author(s)
T. W. Yee
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
betaff,
genbetaII,
dagum,
sinmad,
fisk,
inv.lomax,
lomax,
paralogistic,
inv.paralogistic.
Examples
bdata <- data.frame(y = rsinmad(2000, shape1.a = 1,
shape3.q = exp(2), scale = exp(1))) # Not genuine data!
# fit <- vglm(y ~ 1, betaII, data = bdata, trace = TRUE)
fit <- vglm(y ~ 1, betaII(ishape2.p = 0.7, ishape3.q = 0.7),
data = bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)