amlbinomial {VGAM} | R Documentation |
Binomial Logistic Regression by Asymmetric Maximum Likelihood Estimation
Description
Binomial quantile regression estimated by maximizing an asymmetric likelihood function.
Usage
amlbinomial(w.aml = 1, parallel = FALSE, digw = 4, link = "logitlink")
Arguments
w.aml |
Numeric, a vector of positive constants controlling the percentiles. The larger the value the larger the fitted percentile value (the proportion of points below the “w-regression plane”). The default value of unity results in the ordinary maximum likelihood (MLE) solution. |
parallel |
If |
digw |
Passed into |
link |
See |
Details
The general methodology behind this VGAM family function
is given in Efron (1992) and full details can be obtained there.
This model is essentially a logistic regression model
(see binomialff
) but the usual deviance is
replaced by an
asymmetric squared error loss function; it is multiplied by
w.aml
for positive residuals.
The solution is the set of regression coefficients that minimize the
sum of these deviance-type values over the data set, weighted by
the weights
argument (so that it can contain frequencies).
Newton-Raphson estimation is used here.
Value
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
Warning
If w.aml
has more than one value then the value returned by
deviance
is the sum of all the (weighted) deviances taken over
all the w.aml
values. See Equation (1.6) of Efron (1992).
Note
On fitting, the extra
slot has list components "w.aml"
and "percentile"
. The latter is the percent of observations
below the “w-regression plane”, which is the fitted values. Also,
the individual deviance values corresponding to each element of the
argument w.aml
is stored in the extra
slot.
For amlbinomial
objects, methods functions for the generic
functions qtplot
and cdf
have not been written yet.
See amlpoisson
about comments on the jargon, e.g.,
expectiles etc.
In this documentation the word quantile can often be interchangeably replaced by expectile (things are informal here).
Author(s)
Thomas W. Yee
References
Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum likelihood. Journal of the American Statistical Association, 87, 98–107.
See Also
amlpoisson
,
amlexponential
,
amlnormal
,
extlogF1
,
alaplace1
,
denorm
.
Examples
# Example: binomial data with lots of trials per observation
set.seed(1234)
sizevec <- rep(100, length = (nn <- 200))
mydat <- data.frame(x = sort(runif(nn)))
mydat <- transform(mydat,
prob = logitlink(-0 + 2.5*x + x^2, inverse = TRUE))
mydat <- transform(mydat, y = rbinom(nn, size = sizevec, prob = prob))
(fit <- vgam(cbind(y, sizevec - y) ~ s(x, df = 3),
amlbinomial(w = c(0.01, 0.2, 1, 5, 60)),
mydat, trace = TRUE))
fit@extra
## Not run:
par(mfrow = c(1,2))
# Quantile plot
with(mydat, plot(x, jitter(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves")))
with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue", lty=1))
# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, jitter(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile curves are red")))
with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue", lty = 1))
for (ii in fit@extra$percentile)
with(mydat, matlines(x, 100 *
qbinom(p = ii/100, size = sizevec, prob = prob) / sizevec,
col = "red", lwd = 2, lty = 1))
## End(Not run)