predictMean {VFP} | R Documentation |
Finding X-Value for Given Y-Value Using a Bisection-Approach.
Description
For given variability-values (Y-axis) on one of three scales (see 'type'), those values on the X-axis are determined which give fitted values equal to the specification.
Usage
predictMean(
obj,
type = c("vc", "sd", "cv"),
model.no = NULL,
alpha = 0.05,
newdata = NULL,
tol = 1e-04,
ci = TRUE,
...
)
Arguments
obj |
(object) of class 'VFP' |
type |
(character) "vc" = variance, "sd" = standard deviation = sqrt(variance), "cv" = coefficient of variation |
model.no |
(integer) specifying which model to use in case 'obj' represents multiple fitted models |
alpha |
(numeric) value specifying the 100x(1-alpha)% confidence interval for the predicted value(s) |
newdata |
(numeric) values representing variability-values on a specific scale ('type') |
tol |
(numeric) tolerance value relative to 'newdata' specifying the stopping criterion for the bisection algorithm, also used to evaluate equality of lower and upper bounds in a bisection step for checking whether a boundary can be determined or not |
ci |
(logical) indicates whether confidence intervals for predicted concentrations are required (TRUE) or not (FALSE), if 'newdata' contains many values the overall computation time can be minimized to 1/3 leaving out runs of the bisection-algorithm for LCL and UCL |
... |
additional parameter passed forward or used internally |
Details
This is achieved using a bisection algorithm which converges according to the specified tolerance 'tol'. In case of 'type="cv"', i.e. if specified Y-values are coefficients of variation, these are interpreted as percentages (15 = 15%).
Value
(data.frame) with variables "Mean" (X-value), "VC", "SD" or "CV" depending on 'type', "Diff" the difference to the specified Y-value, "LCL" and "UCL" as limits of the 100x(1-alpha)% CI.
Author(s)
Andre Schuetzenmeister andre.schuetzenmeister@roche.com
See Also
fit.vfp
, predict.VFP
, plot.VFP
Examples
# perform variance component analyses first
library(VCA)
data(CA19_9)
fits.CA19_9 <- anovaVCA(result~site/day, CA19_9, by="sample")
# extract repeatability
mat.CA19_9 <- getMat.VCA(fits.CA19_9, "error")
res.CA19_9 <- fit.vfp(mat.CA19_9, 1:10)
summary(res.CA19_9)
print(res.CA19_9)
# predict CA19_9-concentration with 5\% CV
predictMean(res.CA19_9, newdata=5)
# this is used in function plot.VFP as well
plot(res.CA19_9, Prediction=list(y=5), type="cv")
plot(res.CA19_9, Prediction=list(y=5), type="cv",
xlim=c(0, 80), ylim=c(0, 10))