vcovVC {VCA} | R Documentation |
Calculate Variance-Covariance Matrix of Variance Components of 'VCA' objects
Description
This function computes the variance-covariance matrix of variance components (VC) either
applying the approach given in the 1^{st}
reference ('method="scm"') or using
the approximation given in the 2^{nd}
reference ('method="gb"').
Usage
vcovVC(obj, method = NULL, quiet = FALSE)
Arguments
obj |
(VCA) object |
method |
(character) string, optionally specifying whether to use the algorithm given in the 1st reference ("scm") or in the 2nd refernce ("gb"). If not not supplied, the option is used coming with the 'VCA' object. |
quiet |
(logical) TRUE = will suppress any warning, which will be issued otherwise |
Details
This function is called on a 'VCA' object, which can be the sole argument. In this case the value assigned to element 'VarVC.method' of the 'VCA' object will be used.
Value
(matrix) corresponding to variance-covariance matrix of variance components
Author(s)
Andre Schuetzenmeister andre.schuetzenmeister@roche.com, Florian Dufey florian.dufey@roche.com
References
Searle, S.R, Casella, G., McCulloch, C.E. (1992), Variance Components, Wiley New York
Giesbrecht, F.G. and Burns, J.C. (1985), Two-Stage Analysis Based on a Mixed Model: Large-Sample Asymptotic Theory and Small-Sample Simulation Results, Biometrics 41, p. 477-486
Examples
## Not run:
data(realData)
dat1 <- realData[realData$PID==1,]
fit <- anovaVCA(y~lot/calibration/day/run, dat1)
vcovVC(fit)
vcovVC(fit, "scm") # Searle-Casella-McCulloch method (1st reference)
vcovVC(fit, "gb") # Giesbrecht and Burns method (2nd reference)
## End(Not run)