Solve {VCA} | R Documentation |
Solve System of Linear Equations using Inverse of Cholesky-Root
Description
Function solves a system of linear equations, respectively, inverts a matrix by means of the inverse Cholesky-root.
Usage
Solve(X, quiet = FALSE)
Arguments
X |
(matrix, Matrix) object to be inverted |
quiet |
(logical) TRUE = will suppress any warning, which will be issued otherwise |
Details
This function is intended to reduce the computational time in function
solveMME
which computes the inverse of the square variance-
covariance Matrix of observations. It is considerably faster than function
solve
(see example).
Whenever an error occurs, which is the case for non positive definite matrices
'X', function MPinv
is called automatically yielding a generalized
inverse (Moore-Penrose inverse) of 'X'.
Value
(matrix, Matrix) corresponding to the inverse of X
Author(s)
Andre Schuetzenmeister andre.schuetzenmeister@roche.com
Examples
## Not run:
# following complex (nonsense) model takes pretty long to fit
system.time(res.sw <- anovaVCA(y~(sample+lot+device)/day/run, VCAdata1))
# solve mixed model equations (not automatically done to be more efficient)
system.time(res.sw <- solveMME(res.sw))
# extract covariance matrix of observations V
V1 <- getMat(res.sw, "V")
V2 <- as.matrix(V1)
system.time(V2i <- solve(V2))
system.time(V1i <- VCA:::Solve(V1))
V1i <- as.matrix(V1i)
dimnames(V1i) <- NULL
dimnames(V2i) <- NULL
all.equal(V1i, V2i)
## End(Not run)
[Package VCA version 1.5.1 Index]