VBel-package {VBel} | R Documentation |
Variational Bayes for Fast and Accurate Empirical Likelihood Inference
Description
Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080/01621459.2023.2169701>.
Details
The DESCRIPTION file:
Package: | VBel |
Type: | Package |
Title: | Variational Bayes for Fast and Accurate Empirical Likelihood Inference |
Version: | 1.0.1 |
Date: | 2024-05-28 |
Authors@R: | c( person("Wei-Chang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCID = "0000-0002-0399-3779")), person("Jeremy", "Lim", , "jeremy.lim@unimelb.edu.au", role = c("cre", "aut")) ) |
Description: | Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080/01621459.2023.2169701>. |
License: | GPL (>= 3) |
Imports: | Rcpp (>= 1.0.12), stats |
LinkingTo: | Rcpp, RcppEigen |
Encoding: | UTF-8 |
Roxygen: | list(markdown = TRUE) |
RoxygenNote: | 7.3.1 |
URL: | https://github.com/jlimrasc/VBel |
BugReports: | https://github.com/jlimrasc/VBel/issues |
Suggests: | mvtnorm, testthat (>= 3.0.0) |
Config/testthat/edition: | 3 |
Author: | Wei-Chang Yu [aut] (<https://orcid.org/0000-0002-0399-3779>), Jeremy Lim [cre, aut] |
Maintainer: | Jeremy Lim <jeremy.lim@unimelb.edu.au> |
Archs: | x64 |
Index of help topics:
VBel-package Variational Bayes for Fast and Accurate Empirical Likelihood Inference compute_AEL Compute the Adjusted Empirical Likelihood compute_GVA Compute the Full-Covariance Gaussian VB Empirical Likelihood Posterior diagnostic_plot Check the convergence of a data set computed by 'compute_GVA'
Author(s)
Wei-Chang Yu [aut] (<https://orcid.org/0000-0002-0399-3779>), Jeremy Lim [cre, aut]
Maintainer: Jeremy Lim <jeremy.lim@unimelb.edu.au>
References
https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2169701
See Also
compute_AEL()
for choice of R and/or C++ computation of AEL
compute_GVA()
for choice of R and/or C++ computation of GVA
diagnostic_plot()
for verifying convergence of computed GVA data
Examples
#ansGVARcppPure <- compute_GVA(mu, C_0, h, delthh, delth_logpi, z, lam0, rho,
#elip, a, iters, iters2, fullCpp = TRUE)
#diagnostic_plot(ansGVARcppPure)
[Package VBel version 1.0.1 Index]