estimation {VBV} | R Documentation |
estimation – estimate trend and seasonal components statically
Description
estimation – estimate trend and seasonal components statically
Usage
estimation(t.vec, y.vec, p, q.vec, base.period, lambda1, lambda2)
Arguments
t.vec |
vector of points in time as integers |
y.vec |
vector of data |
p |
maximum exponent in polynomial for trend |
q.vec |
vector containing frequencies to use for seasonal component, given as integers, i.e. c(1, 3, 5) for 1/2pi, 3/2pi, 5/2*pi (times length of base period) |
base.period |
base period in number of observations, i.e. 12 for monthly data with yearly oscillations |
lambda1 |
penalty weight for smoothness of trend |
lambda2 |
penalty weight for smoothness of seasonal component (lambda1 == lambda2 == Inf result in estimations of the original Berliner Verfahren) |
Value
A dataframe with the following components:
dataoriginal data y.vec
trendvector of estimated trend of length length(y.vec)
seasonvector of estimated season of length length(y.vec)
Examples
### using of estimation
t <- 1:121 # equidistant time points, i.e. 5 days
y <- 0.1*t + sin(t) + rnorm(length(t))
p <- 2 # maximally quadratic
q <- c(1, 3, 5) # 'seasonal' components within the base period
base.period <- 24 # i.e. hourly data with daily cycles
l1 <- 1
l2 <- 10
est <- estimation( t, y, p, q, base.period, l1, l2)
plot(est$data)
lines(est$trend + est$season)
[Package VBV version 0.6.2 Index]