VBJM_fit {VBJM} | R Documentation |
The function to fit VBJM.
Description
The function is used to fit joint models using variational inference algorithm.
Usage
VBJM_fit(
LongData = NULL,
SurvData = NULL,
marker.name = NULL,
control_list = NULL,
maxiter = 100,
eps = 1e-04
)
Arguments
LongData |
a data frame containing the longitudinal data
(see |
SurvData |
a data frame containing the survival data
(see |
marker.name |
a vector indicating which set of longitudinal biomarkers to be analyzed. If NULL, all biomarkers in LongData will be used. |
control_list |
a list of parameters specifying the joint model
(see |
maxiter |
the maximum number of iterations. |
eps |
threshold for convergence. |
Value
return a data frame with estimates, standard errors, and 95% CIs for each of the following parameters, where VAR indicates the corresponding variable name.
VAR_alpha |
the parameters for the effects of biomarkers in the survival submodel, where VAR indicates the names for the biomarkers. |
Weibull_shape |
the shape parameter in the Weibull baseline hazard in the survival submodel. |
Weibull_scale |
the scale parameter in the Weibull baseline hazard in the survival submodel. |
Surv_gamma_VAR |
the parameters for the effects of baseline covariates in the survival submodel. |
VAR_fix |
the parameters for the fixed-effects in the longitudinal submodel. |
References
Jieqi Tu and Jiehuan Sun (2023). "Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome". Statistics in Medicine, 42(3), 316-330.
Examples
data(VBJMdata)
flex_time_fun <- function(x=NULL){
xx = matrix(x, ncol = 1)
colnames(xx) = c("year_l")
xx
}
ran_time_ind = 1 ## random time-trend effects
control_list = list(
ID_name = "ID", item_name = "item",
value_name = "value", time_name = "years",
fix_cov = NULL, random_cov = NULL,
FUN = flex_time_fun, ran_time_ind=ran_time_ind,
surv_time_name = "ftime", surv_status_name = "fstat",
surv_cov = "x", n_points = 5
)
## takes about one minute.
res = VBJM_fit(LongData=LongData, SurvData=SurvData,
control_list=control_list)