shrinkVARcoef {VARshrink} | R Documentation |
Semiparametric Bayesian Shrinkage Estimator for Multivariate Regression
Description
Compute the semiparametric Bayesian shrinkage estimator of Psi and Sigma for a given shrinkage parameter lambda. The function is a private function for lm_semi_Bayes_PCV() and lm_ShVAR_KCV().
Usage
shrinkVARcoef(Y, X, lambda, dof = Inf, prior_type = "NCJ",
TolDRes = 1e-04, m0 = ncol(Y))
Arguments
Y |
An N x K matrix of dependent variables. |
X |
An N x M matrix of regressors. |
lambda |
A shrinkage intensity parameter value between 0~1. |
dof |
Degree of freedom for multivariate t-distribution. If NULL or Inf, then use multivariate normal distribution. |
prior_type |
"NCJ" for non-conjugate prior and "CJ" for conjugate prior for scale matrix Sigma. |
TolDRes |
Tolerance parameter for stopping criterion. |
m0 |
A hyperparameter for inverse Wishart distribution for Sigma |
References
N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007