lm_multiv_ridge {VARshrink} | R Documentation |
Multivariate Ridge Regression
Description
Estimate regression coefficients by using ridge regression.
Usage
lm_multiv_ridge(Y, X, lambda = 0, do_scale = FALSE)
Arguments
Y |
An N x K matrix of dependent variables. |
X |
An N x M matrix of regressors. |
lambda |
Numeric vector of lambda values |
do_scale |
If true, X is centered and scaled, and Y is centered. |
Details
Consider the multivariate regression:
Y = X Psi + e.
Psi is a M-by-K matrix of regression coefficients. The ridge regression estimate for the coefficients is
Psi = (X'X + lambda * I)^{-1} X'Y.
Value
A list object with the components: 1) Psi - A list of estimated Psi matrices, 2) lambda - A vector of lambda values, 3) GCV - A vector of GCV values
References
G. H. Golub, M. Heath, G. Wahba (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215-223. doi: 10.2307/1268518
[Package VARshrink version 0.3.1 Index]