PR.IARM {VAR.etp} | R Documentation |
Improved Augmented Regression Method (IARM) for Predictive Regression
Description
Function for Improved ARM (IARM) estimation and testing
Usage
PR.IARM(x, y, p, Rmat = diag(k * p), rvec = matrix(0, nrow = k * p))
Arguments
x |
predictor or a matrix of predictors in column |
y |
variable to be predicted, usually data1 return |
p |
AR order |
Rmat |
Restriction matrix, refer to function Rmatrix |
rvec |
Restriction matrix, refer to function Rmatrix |
Details
Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.
Value
LS |
Ordinary Least Squares Estimators |
IARM |
IARM Estimators |
AR |
AR parameter estimators |
ARc |
Bias-corrected AR parameter estimators |
Fstats |
Fstats and their p-values |
Covbc |
Covariance matrix of the IARM estimators (for the predictive coefficients only) |
Note
Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.
Author(s)
Jae H. Kim
References
Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.
Examples
data(data1)
# Replicating Table 5 (excess return) of Kim (2014)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100);
Rmat1=Rmatrix(p=1,k=2,type=1,index=0); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
M=PR.IARM(x,y,p=1,Rmat,rvec)