vamForCollection {VAM} | R Documentation |
VAM method for multiple gene sets
Description
Executes the Variance-adjusted Mahalanobis (VAM) method (vam
) on multiple gene sets, i.e., a gene set collection.
Usage
vamForCollection(gene.expr, gene.set.collection, tech.var.prop,
gene.weights, center=FALSE, gamma=TRUE)
Arguments
gene.expr |
An n x p matrix of gene expression values for n cells and p genes. |
gene.set.collection |
List of m gene sets for which scores are computed.
Each element in the list corresponds to a gene set and the list element is a vector
of indices for the genes in the set. The index value is defined relative to the
order of genes in the |
tech.var.prop |
See description in |
gene.weights |
See description in |
center |
See description in |
gamma |
See description in |
Value
A list containing two elements:
"cdf.value": n x m matrix of 1 minus the one-sided p-values for the m gene sets and n cells.
"distance.sq": n x m matrix of squared adjusted Mahalanobis distances for the m gene sets and n cells.
See Also
Examples
# Simulate Poisson expression data for 10 genes and 10 cells
gene.expr=matrix(rpois(100, lambda=2), nrow=10)
# Simulate technical variance proportions
tech.var.prop=runif(10)
# Define a collection with two disjoint sets that span the 10 genes
collection=list(set1=1:5, set2=6:10)
# Execute VAM on both sets using default values for center and gamma
vamForCollection(gene.expr=gene.expr, gene.set.collection=collection,
tech.var.prop=tech.var.prop)
# Create weights that prioritize the first 2 genes for the first set
# and the last 2 genes for the second set
gene.weights = list(c(2,2,1,1,1),c(1,1,1,2,2))
# Execute VAM using the weights
vamForCollection(gene.expr=gene.expr, gene.set.collection=collection,
tech.var.prop=tech.var.prop, gene.weights=gene.weights)