TANG.IDX {UniversalCVI} | R Documentation |
Tang index
Description
Computes the TANG (Y. Tang et al., 2005) index for a result of either FCM or EM clustering from user specified cmin
to cmax
.
Usage
TANG.IDX(x, cmax, cmin = 2, method = "FCM", fzm = 2, nstart = 20, iter = 100)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
nstart |
a maximum number of initial random sets for FCM for |
iter |
a maximum number of iterations for |
Details
The Tang index is defined as
TANG(c) = \frac{\sum_{j=1}^c \sum_{i=1}^n\mu_{ij}^2\| {x}_i-{v}_j\|^2 + \frac{1}{c(c-1)}\sum_{j\neq k}\| {v}_j-{v}_k\|^2}{\min_{j\neq k} \{ \| {v}_j-{v}_k\|^2 \}+\frac{1}{c}}.
The smallest value of TANG(c)
indicates a valid optimal partition.
Value
TANG |
the TANG index for |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
Y. Tang, F. Sun, and Z. Sun, “Improved validation index for fuzzy clustering,” in Proceedings of the 2005, American Control Conference, 2005., pp. 1120–1125 vol. 2, 2005. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1470111&isnumber=31519
See Also
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
Examples
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- FCM algorithm ----
# Compute the TANG index
FCM.TANG = TANG.IDX(scale(x), cmax = 15, cmin = 2, method = "FCM",
fzm = 2, nstart = 20, iter = 100)
print(FCM.TANG)
# The optimal number of cluster
FCM.TANG[which.min(FCM.TANG$TANG),]
# ---- EM algorithm ----
# Compute the TANG index
EM.TANG = TANG.IDX(scale(x), cmax = 15, cmin = 2, method = "EM",
nstart = 20, iter = 100)
print(EM.TANG)
# The optimal number of cluster
EM.TANG[which.min(EM.TANG$TANG),]