SF.IDX {UniversalCVI} | R Documentation |
The score function
Description
Computes the SF (S. Saitta et al., 2007) index for a result either kmeans or hierarchical clustering from user specified kmin
to kmax
.
Usage
SF.IDX(x, kmax, kmin = 2, method = "kmeans", nstart = 100)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
kmax |
a maximum number of clusters to be considered. |
kmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
nstart |
a maximum number of initial random sets for kmeans for |
Details
The smallest value of SF(k)
indicates a valid optimal partition.
Value
SF |
the Score function index for |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
S. Saitta, B. Raphael, I. Smith, "A bounded index for cluster validity," In Perner, P.: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, 4571, Springer (2007).
See Also
Hvalid, Wvalid, DI.IDX, FzzyCVIs, R1_data
Examples
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- Kmeans ----
# Compute the SF index
K.SF = SF.IDX(scale(x), kmax = 15, kmin = 2, method = "kmeans", nstart = 100)
print(K.SF)
# The optimal number of cluster
K.SF[which.min(K.SF$SF),]
# ---- Hierarchical ----
# Average linkage
# Compute the SF index
H.SF = SF.IDX(scale(x), kmax = 15, kmin = 2, method = "hclust_average")
print(H.SF)
# The optimal number of cluster
H.SF[which.min(H.SF$SF),]