KWON.IDX {UniversalCVI} | R Documentation |
KWON index
Description
Computes the KWON (S. H. Kwon, 1998) index for a result of either FCM or EM clustering from user specified cmin
to cmax
.
Usage
KWON.IDX(x, cmax, cmin = 2, method = "FCM", fzm = 2, nstart = 20, iter = 100)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
nstart |
a maximum number of initial random sets for FCM for |
iter |
a maximum number of iterations for |
Details
The KWON index is defined as
KWON(c) = \frac{\sum_{j=1}^c\sum_{i=1}^n \mu_{ij}^2 \|{x}_i-{v}_j\|^2 +\frac{1}{c}\sum_{j=1}^c\| {v}_j-{v}_0\|^2}{\min_{i \neq j} \| {v}_i-{v}_j\|^2}.
The smallest value of KWON(c)
indicates a valid optimal partition.
Value
KWON |
the KWON index for |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
S. H. Kwon, “Cluster validity index for fuzzy clustering,” Electronics letters, vol. 34, no. 22, pp. 2176–2177, 1998. doi:10.1049/el:19981523
See Also
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
Examples
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- FCM algorithm ----
# Compute the KWON index
FCM.KWON = KWON.IDX(scale(x), cmax = 15, cmin = 2, method = "FCM",
fzm = 2, nstart = 20, iter = 100)
print(FCM.KWON)
# The optimal number of cluster
FCM.KWON[which.min(FCM.KWON$KWON),]
# ---- EM algorithm ----
# Compute the KWON index
EM.KWON = KWON.IDX(scale(x), cmax = 15, cmin = 2, method = "EM",
nstart = 20, iter = 100)
print(EM.KWON)
# The optimal number of cluster
EM.KWON[which.min(EM.KWON$KWON),]