KPBM.IDX {UniversalCVI} | R Documentation |
Modified Kernel form of Pakhira-Bandyopadhyay-Maulik (KPBM) index
Description
Computes the KPBM (C. Alok, 2010) index for a result of either FCM or EM clustering from user specified cmin
to cmax
.
Usage
KPBM.IDX(x, cmax, cmin = 2, method = "FCM", fzm = 2, nstart = 20, iter = 100)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
nstart |
a maximum number of initial random sets for FCM for |
iter |
a maximum number of iterations for |
Details
The KPBM index is defined as
KPBM(c) = \left(\frac{\max_{j \neq k}\| {v}_j-{v}_k\|}{c\sum_{j=1}^c\sum_{i=1}^n\mu_{ij}\| {x}_i-{v}_j\|}\right)^2.
The largest value of KPBM(c)
indicates a valid optimal partition.
Value
KPBM |
the KPBM index for |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
C. Alok. (2010). "An investigation of clustering algorithms and soft computing approaches for pattern recognition," Department of Computer Science, Assam University. http://hdl.handle.net/10603/93443
See Also
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
Examples
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- FCM algorithm ----
# Compute the KPBM index
FCM.KPBM = KPBM.IDX(scale(x), cmax = 15, cmin = 2, method = "FCM",
fzm = 2, nstart = 20, iter = 100)
print(FCM.KPBM)
# The optimal number of cluster
FCM.KPBM[which.max(FCM.KPBM$KPBM),]
# ---- EM algorithm ----
# Compute the KPBM index
EM.KPBM = KPBM.IDX(scale(x), cmax = 15, cmin = 2, method = "EM",
nstart = 20, iter = 100)
print(EM.KPBM)
# The optimal number of cluster
EM.KPBM[which.max(EM.KPBM$KPBM),]