HF.IDX {UniversalCVI} | R Documentation |
HF index
Description
Computes the HF (F. Haouas et al., 2017) index for a result of either FCM or EM clustering from user specified cmin
to cmax
.
Usage
HF.IDX(x, cmax, cmin = 2, method = "FCM", fzm = 2, nstart = 20, iter = 100)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
nstart |
a maximum number of initial random sets for FCM for |
iter |
a maximum number of iterations for |
Details
The HF index is defined as
HF(c) = \frac{\sum_{j=1}^c \sum_{i=1}^n\mu_{ij}^m\| {x}_i-{v}_j\|^2 + \frac{1}{c(c-1)}\sum_{j\neq k}\| {v}_j-{v}_k\|^2}{\frac{n}{2c}\left(\min_{j \neq k}\{\| {v}_j-{v}_k\|^2\} +\text{median}_{j \neq k }\{\| {v}_j-{v}_k\|^2\}\right)}.
The smallest value of HF(c)
indicates a valid optimal partition.
Value
HF |
the HF index for |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
F. Haouas, Z. Ben Dhiaf, A. Hammouda and B. Solaiman, "A new efficient fuzzy cluster validity index: Application to images clustering," 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1-6. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015651&isnumber=8015374
See Also
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
Examples
library(UniversalCVI)
# The data is from Wiroonsri (2024).
x = R1_data[,1:2]
# ---- FCM algorithm ----
# Compute the HF index
FCM.HF = HF.IDX(scale(x), cmax = 15, cmin = 2, method = "FCM",
fzm = 2, nstart = 20, iter = 100)
print(FCM.HF)
# The optimal number of cluster
FCM.HF[which.min(FCM.HF$HF),]
# ---- EM algorithm ----
# Compute the HF index
EM.HF = HF.IDX(scale(x), cmax = 15, cmin = 2, method = "EM",
nstart = 20, iter = 100)
print(EM.HF)
# The optimal number of cluster
EM.HF[which.min(EM.HF$HF),]