CCV.IDX {UniversalCVI} | R Documentation |
Correlation Cluster Validity (CCV) index
Description
Computes the CCVP and CCVS (M. Popescu et al., 2013) indexes for a result of either FCM or EM clustering from user specified cmin
to cmax
.
Usage
CCV.IDX(x, cmax, cmin = 2, indexlist = "all", method = 'FCM', fzm = 2,
iter = 100, nstart = 20)
Arguments
x |
a numeric data frame or matrix where each column is a variable to be used for cluster analysis and each row is a data point. |
cmax |
a maximum number of clusters to be considered. |
cmin |
a minimum number of clusters to be considered. The default is |
indexlist |
a character string indicating which The generalized C index be computed (" |
method |
a character string indicating which clustering method to be used ( |
fzm |
a number greater than 1 giving the degree of fuzzification for |
iter |
a maximum number of iterations for |
nstart |
a maximum number of initial random sets for FCM for |
Details
A new cluster validity framework that compares the structure in the data to the structure of dissimilarity matrices induced by a matrix transformation of the partition being tested. The largest value of CCV(c)
indicates a valid optimal partition.
Value
Each of the followings shows the values of each index for c
from cmin
to cmax
in a data frame.
CCVP |
the Pearson Correlation Cluster Validity index. |
CCVS |
the Spearman’s (rho) Correlation Cluster Validity index. |
Author(s)
Nathakhun Wiroonsri and Onthada Preedasawakul
References
M. Popescu, J. C. Bezdek, T. C. Havens and J. M. Keller (2013). "A Cluster Validity Framework Based on Induced Partition Dissimilarity." https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6246717&isnumber=6340245
See Also
R1_data, TANG.IDX, FzzyCVIs, WP.IDX, Hvalid
Examples
library(UniversalCVI)
# Iris data
x = iris[,1:4]
# ---- FCM algorithm ----
# Compute all the indices by CCV.IDX
FCM.ALL.CCV = CCV.IDX(scale(x), cmax = 10, cmin = 2, indexlist = "all",
method = 'FCM', fzm = 2, iter = 100, nstart = 20)
print(FCM.ALL.CCV)
# Compute CCVP index
FCM.CCVP = CCV.IDX(scale(x), cmax = 10, cmin = 2, indexlist = "CCVP",
method = 'FCM', fzm = 2, iter = 100, nstart = 20)
print(FCM.CCVP)
# ---- EM algorithm ----
# Compute all the indices by CCV.IDX
EM.ALL.CCV = CCV.IDX(scale(x), cmax = 10, cmin = 2, indexlist = "all",
method = 'EM', iter = 100, nstart = 20)
print(EM.ALL.CCV)
# Compute CCVP index
EM.CCVP = CCV.IDX(scale(x), cmax = 10, cmin = 2, indexlist = "CCVP",
method = 'EM', iter = 100, nstart = 20)
print(EM.CCVP)