SurvivalModel-class {Umpire} | R Documentation |
The "SurvivalModel" Class
Description
A SurvivalModel
class represents the information for simulating
survival times for each patient.
Usage
SurvivalModel(baseHazard = 1/5,
accrual = 5,
followUp = 1,
units = 12,
unitName = "months")
## S4 method for signature 'SurvivalModel'
rand(object, n, beta = NULL, ...)
Arguments
baseHazard |
numeric scalar describing the underlying hazard rate at baseline levels of covariates |
accrual |
numeric scalar representing number of patient accrual years |
followUp |
numeric scalar representing length of follow up, in years |
units |
numeric scalar representing number of units per year where
units are specified by |
unitName |
character string representing the |
object |
object of class |
n |
numeric scalar specifying quantity of random numbers |
beta |
numeric vector specifying beta parameters for patients |
... |
extra arguments for generic routines |
Value
The SurvivalModel
generator returns an object of class
SurvivalModel
.
The rand
method returns a data.frame with components:
LFU |
time to event |
Event |
whether the data is censored |
Objects from the Class
Although objects of the class can be created by a direct call to
new, the preferred method is to use the
SurvivalModel
generator function.
Slots
baseHazard
:see corresponding argument above
accrual
:see corresponding argument above
followUp
:see corresponding argument above
units
:see corresponding argument above
unitName
:see corresponding argument above
Methods
- rand(object, n, beta, ...)
Simulate survival data for
n
patients givenbeta
.
Author(s)
Kevin R. Coombes krc@silicovore.com, Jiexin Zhang jiexinzhang@mdanderson.org,
References
Zhang J, Coombes KR.
Sources of variation in false discovery rate estimation include
sample size, correlation, and inherent differences between groups.
BMC Bioinformatics. 2012; 13 Suppl 13:S1.
See Also
Examples
showClass("SurvivalModel")
sm <- SurvivalModel()
## Generate data from base model
outcome <- rand(sm, 100)
summary(outcome)
## Generate data from five classes with different beta parameters
beta <- rep(rnorm(5, 0, 2), each = 20)
outcome <- rand(sm, 100, beta = beta)
summary(outcome)