SummaryZIHR {UHM} | R Documentation |
Summary of ZIHR
Description
Computing a summary of the outputs of the ZIHR function
Usage
SummaryZIHR(object)
Arguments
object |
an object inheriting from class ZIHR |
Details
It provides a summary of the output of the ZIHR function, including parameter estimations.
Value
Estimation list of posterior summary includes estimation, standard deviation, lower and upper bounds for 95% credible intervals, and Rhat (when n.chain > 1). DIC deviance information criterion LPML Log Pseudo Marginal Likelihood (LPML) criterion
Author(s)
Taban Baghfalaki t.baghfalaki@gmail.com, Mojtaba Ganjali m-ganjali@sbu.ac.ir
See Also
Examples
# Example 1
data(dataD)
index <- 1:(dim(dataD)[1])
IND_new <- sample(index, .5 * length(index))
datat <- dataD[IND_new, ]
datav <- dataD[-IND_new, ]
modelY <- y~x1 + x2
modelZ <- z~x1
D1 <- ZIHR(modelY, modelZ,
data = datat, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Poisson"
)
SummaryZIHR(D1)
Prediction(D1, data = datav)
D2 <- ZIHR(modelY, modelZ,
data = datat, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Bell"
)
SummaryZIHR(D2)
# Example 2
data(dataC)
modelY <- y~x1 + x2
modelZ <- z~x1
C <- ZIHR(modelY, modelZ,
data = dataC, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Gaussian"
)
SummaryZIHR(C)
Prediction(C, data = datav)
# Example 3
data(dataP)
modelY <- y~x1 + x2
modelZ <- z~x1
P1 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Exponential"
)
SummaryZIHR(P1)
P2 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Gamma"
)
SummaryZIHR(P2)
P3 <- ZIHR(modelY, modelZ,
data = dataP, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Weibull"
)
SummaryZIHR(P3)
# Example B
data(dataB)
modelY <- y~x1 + x2
modelZ <- z~x1
P <- ZIHR(modelY, modelZ,
data = dataB, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "Beta"
)
SummaryZIHR(P)
# Example C
data(dataI)
modelY <- y~x1 + x2
modelZ <- z~x1
P4 <- ZIHR(modelY, modelZ,
data = dataI, n.chains = 2, n.iter = 1000,
n.burnin = 500, n.thin = 1, family = "inverse.gaussian"
)
SummaryZIHR(P4)
[Package UHM version 0.3.0 Index]