ETSmodel {UComp} | R Documentation |
ETSmodel
Description
Estimates and forecasts ETS general univariate models
Usage
ETSmodel(
y,
u = NULL,
model = "???",
s = frequency(y),
h = max(2 * s, 6),
criterion = "aicc",
lambda = 1,
armaIdent = FALSE,
identAll = FALSE,
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(1e-08, 1 - 1e-08),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
armaIdent |
check for arma models for error component (TRUE / FALSE). |
identAll |
run all models to identify the best one (TRUE / FALSE) |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma) with consraints:
|
Details
ETSmodel
is a function for modelling and forecasting univariate
time series with ExponenTial Smoothing (ETS) time series models.
It sets up the model with a number of control variables that
govern the way the rest of functions in the package will work. It also estimates
the model parameters by Maximum Likelihood and forecasts the data.
Value
An object of class ETS
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any ETS
object as specified in what follows (function
ETS
fills in all of them at once):
After running ETSmodel
or ETSestim
:
p |
Estimated parameters |
criteria |
Values for estimation criteria (LogLik, AIC, BIC, AICc) |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
After running ETSvalidate
:
table |
Estimation and validation table |
comp |
Estimated components in matrix form |
After running ETScomponents
:
comp |
Estimated components in matrix form |
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSvalidate
,
ETScomponents
, ETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ETSmodel(y)
m1 <- ETSmodel(y, model = "A?A")
## End(Not run)