| vis_identifier_multi_cor {UCSCXenaShiny} | R Documentation | 
Visualize Correlation for Multiple Identifiers
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_multi_cor(
  dataset,
  ids,
  samples = NULL,
  matrix.type = c("full", "upper", "lower"),
  type = c("parametric", "nonparametric", "robust", "bayes"),
  partial = FALSE,
  sig.level = 0.05,
  p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
    "none"),
  color_low = "#E69F00",
  color_high = "#009E73",
  ...
)
Arguments
| dataset | the dataset to obtain identifiers. | 
| ids | the molecule identifiers. | 
| samples | default is  | 
| matrix.type | Character,  | 
| type | A character specifying the type of statistical approach: 
 You can specify just the initial letter. | 
| partial | Can be  | 
| sig.level | Significance level (Default:  | 
| p.adjust.method | Adjustment method for p-values for multiple
comparisons. Possible methods are:  | 
| color_low | the color code for lower value mapping. | 
| color_high | the color code for higher value mapping. | 
| ... | other parameters passing to ggstatsplot::ggcorrmat. | 
Value
a (gg)plot object.
Examples
## Not run: 
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
## End(Not run)