vis_identifier_multi_cor {UCSCXenaShiny} | R Documentation |
Visualize Correlation for Multiple Identifiers
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_multi_cor(
dataset,
ids,
samples = NULL,
matrix.type = c("full", "upper", "lower"),
type = c("parametric", "nonparametric", "robust", "bayes"),
partial = FALSE,
sig.level = 0.05,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
color_low = "#E69F00",
color_high = "#009E73",
...
)
Arguments
dataset |
the dataset to obtain identifiers. |
ids |
the molecule identifiers. |
samples |
default is |
matrix.type |
Character, |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
partial |
Can be |
sig.level |
Significance level (Default: |
p.adjust.method |
Adjustment method for p-values for multiple
comparisons. Possible methods are: |
color_low |
the color code for lower value mapping. |
color_high |
the color code for higher value mapping. |
... |
other parameters passing to ggstatsplot::ggcorrmat. |
Value
a (gg)plot object.
Examples
## Not run:
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
## End(Not run)