vis_dim_dist {UCSCXenaShiny} | R Documentation |
Visualize the distribution difference of samples after dimension reduction analysis
Description
Visualize the distribution difference of samples after dimension reduction analysis
Usage
vis_dim_dist(
ids = c("TP53", "KRAS", "PTEN", "MDM2", "CDKN1A"),
data_type = "mRNA",
group_info = NULL,
DR_method = c("PCA", "UMAP", "tSNE"),
palette = "Set1",
add_margin = NULL,
opt_pancan = .opt_pancan
)
Arguments
ids |
molecular identifiers (>=3) |
data_type |
molecular types, refer to query_pancan_value() function |
group_info |
two-column grouping information with names 'Sample','Group' |
DR_method |
the dimension reduction method |
palette |
the color setting of RColorBrewer |
add_margin |
the marginal plot (NULL, "density", "boxplot") |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot object or rawdata list
Examples
## Not run:
group_info = tcga_clinical_fine %>%
dplyr::filter(Cancer=="BRCA") %>%
dplyr::select(Sample, Code) %>%
dplyr::rename(Group=Code)
vis_dim_dist(
ids = c("TP53", "KRAS", "PTEN", "MDM2", "CDKN1A"),
group_info = group_info
)
## End(Not run)
[Package UCSCXenaShiny version 2.1.0 Index]