predict_lda {Twitmo}R Documentation

Predict topics of tweets using fitted LDA model

Description

Predict topics of tweets using fitted LDA model.

Usage

predict_lda(
  data,
  lda_model,
  response = "max",
  remove_numbers = TRUE,
  remove_punct = TRUE,
  remove_symbols = TRUE,
  remove_url = TRUE
)

Arguments

data

Data frame of parsed tweets. Obtained either by using load_tweets or stream_in in conjunction with tweets_with_users.

lda_model

Fitted LDA Model. Object of class LDA.

response

Type of response. Either "prob" for probabilities or "max" one topic (default).

remove_numbers

Logical. If TRUE remove tokens that consist only of numbers, but not words that start with digits, e.g. 2day. See tokens.

remove_punct

Logical. If TRUE remove all characters in the Unicode "Punctuation" [P] class, with exceptions for those used as prefixes for valid social media tags if preserve_tags = TRUE. See tokens

remove_symbols

Logical. If TRUE remove all characters in the Unicode "Symbol" [S] class.

remove_url

Logical. If TRUE find and eliminate URLs beginning with http(s).

Value

Data frame of topic predictions or predicted probabilities per topic (see response).

Examples

## Not run: 

library(Twitmo)

# load tweets (included in package)
mytweets <- load_tweets(system.file("extdata", "tweets_20191027-141233.json", package = "Twitmo"))

# Pool tweets into longer pseudo-documents
pool <- pool_tweets(data = mytweets)
pooled_dfm <- pool$document_term_matrix

# fit your LDA model with 7 topics
model <- fit_lda(pooled_dfm, n_topics = 7, method = "Gibbs")

# Predict topics of tweets using your fitted LDA model
predict_lda(mytweets, model, response = "prob")

## End(Not run)

[Package Twitmo version 0.1.2 Index]