summary {TukeyC} | R Documentation |
Summary Method for TukeyC and TukeyC.nest Objects
Description
Returns (and prints) a summary list for TukeyC
objects.
Usage
## S3 method for class 'TukeyC'
summary(object,
complete=TRUE, ...)
Arguments
object |
A given object of the class |
complete |
A logical value indicating if the summary is complete (mean difference and p-value) or only the groups. |
... |
Potential further arguments (required by generic). |
Author(s)
Jose Claudio Faria (joseclaudio.faria@gmail.com)
Enio Jelihovschi (eniojelihovs@gmail.com)
Ivan Bezerra Allaman (ivanalaman@gmail.com)
References
Chambers, J.M. and Hastie, T.J. (1992) Statistical Models in S. Wadsworth and Brooks/Cole.
See Also
Examples
##
## Examples: Completely Randomized Design (CRD)
## More details: demo(package='TukeyC')
##
## The parameters can be: formula, aov, lm and aovlist
data(CRD2)
## From: formula
tk1 <- with(CRD2,
TukeyC(y ~ x,
data=dfm,
which='x',
id.trim=5))
summary(tk1)
##
## Example: Randomized Complete Block Design (RCBD)
## More details: demo(package='TukeyC')
##
## The parameters can be: formula, aov, lm and aovlist
data(RCBD)
## From: formula
tk2 <- with(RCBD,
TukeyC(y ~ blk + tra,
data=dfm,
which='tra'))
summary(tk2)
##
## Example: Latin Squares Design (LSD)
## More details: demo(package='TukeyC')
##
## The parameters can be: design matrix and the response variable,
## data.frame or aov
data(LSD)
## From: formula
tk3 <- with(LSD,
TukeyC(y ~ rows + cols + tra,
data=dfm,
which='tra'))
summary(tk3)
##
## Example: Factorial Experiment (FE)
## More details: demo(package='TukeyC')
##
## The parameters can be: design matrix and the response variable,
## data.frame or aov
data(FE)
## From: design matrix (dm) and response variable (y)
## Main factor: N
tk4 <- with(FE,
TukeyC(y ~ blk + N*P*K,
data=dfm,
which='N'))
summary(tk4)
## Nested: p1/N
## Testing N inside of level one of P
ntk1 <- with(FE,
TukeyC(y ~ blk + N*P*K,
data=dfm,
which='P:N',
fl1=1))
summary(ntk1)
## Nested: k1/p1/N
## Testing N inside of level one of K and level one of P
ntk2 <- with(FE,
TukeyC(y ~ blk + N*P*K,
data=dfm,
which='K:P:N',
fl1=1,
fl2=1))
summary(ntk2)
## Nested: k2/n2/P
ntk3 <- with(FE,
TukeyC(y ~ blk + N*P*K,
data=dfm,
which='K:N:P',
fl1=2,
fl2=2))
summary(ntk3)
## Nested: p1/n1/K
ntk4 <- with(FE,
TukeyC(y ~ blk + N*P*K,
data=dfm,
which='P:N:K',
fl1=1,
fl2=1))
summary(ntk4)
##
## Example: Split-plot Experiment (SPE)
## More details: demo(package='TukeyC')
##
data(SPE)
## From: formula
## Main factor: P
## It is necessary to inform the appropriate error for the test
tk1 <- with(SPE,
TukeyC(y ~ blk + P*SP + Error(blk/P),
data=dfm,
which='P',
error='blk:P'))
summary(tk1)
## Nested: p1/SP
tkn1 <- with(SPE,
TukeyC(y ~ blk + P*SP + Error(blk/P),
data=dfm,
which='P:SP',
fl1=1 ))
summary(tkn1)
## From: formula
## Main factor: P
## It is necessary to inform the appropriate error for the test
data(SSPE)
tk1 <- with(SSPE,
TukeyC(y ~ blk + P*SP*SSP + Error(blk/P/SP),
data=dfm,
which='P',
error='blk:P'))
summary(tk1)
## Main factor: SP
## It is necessary to inform the appropriate error for the test
tk2 <- with(SSPE,
TukeyC(y ~ blk + P*SP*SSP + Error(blk/P/SP),
data=dfm,
which='SP',
error='blk:P:SP'))
summary(tk2)
## Main factor: SSP
tk3 <- with(SSPE,
TukeyC(y ~ blk + P*SP*SSP + Error(blk/P/SP),
data=dfm,
which='SSP'))
summary(tk3)
## Nested: p1/SSP
tkn1 <- with(SSPE,
TukeyC(y ~ blk + P*SP*SSP + Error(blk/P/SP),
data=dfm,
which='P:SSP',
fl1=1))
summary(tkn1)
## From: aovlist
av <- with(SSPE,
aov(y ~ blk + P*SP*SSP + Error(blk/P/SP),
data=dfm))
summary(av)
## Nested: P1/SP1/SSP
tkn2 <- TukeyC(av,
which='P:SP:SSP',
fl1=1,
fl2=1)
summary(tkn2)
## Nested: P2/SP1/SSP
tkn3 <- TukeyC(av,
which='P:SP:SSP',
fl1=2,
fl2=1)
summary(tkn3)
## Nested: SSP2/P1/SP - it is necessary to inform how to combinate the errors
tkn4 <- TukeyC(av,
which='SSP:P:SP',
fl1=2,
fl2=1,
error='Within/blk:P/blk:P:SP')
summary(tkn4)
[Package TukeyC version 1.3-42 Index]