Gaussian {TrueSkillThroughTime} | R Documentation |
Gaussian
Description
Gaussian class
Usage
Gaussian(mu = 0, sigma = 1)
Pi(N)
## S4 method for signature 'Gaussian'
Pi(N)
Tau(N)
## S4 method for signature 'Gaussian'
Tau(N)
forget(N, gamma, t)
## S4 method for signature 'Gaussian,numeric,numeric'
forget(N, gamma, t)
isapprox(N, M, tol = 1e-04)
## S4 method for signature 'Gaussian,Gaussian,numeric'
isapprox(N, M, tol = 1e-04)
## S4 method for signature 'Gaussian,Gaussian'
e1 + e2
## S4 method for signature 'Gaussian,Gaussian'
e1 - e2
## S4 method for signature 'Gaussian,Gaussian'
e1 * e2
## S4 method for signature 'Gaussian,Gaussian'
e1 / e2
## S4 method for signature 'Gaussian,Gaussian'
e1 == e2
## S4 method for signature 'Player'
performance(a)
Arguments
mu |
A number, the mean of the Gaussian distribution. |
sigma |
A number, the standar deviation of the Gaussian distribution. |
N |
A Gaussian object |
gamma |
The dynamic factor, the dynamic uncertainty |
t |
The elapsed time |
M |
A Gaussian object |
tol |
The tolerance threshold for comparitions |
e1 |
A Gaussian object |
e2 |
A Gaussian object |
a |
A Gaussian object |
Value
Gaussian object
Examples
N01 = Gaussian(0,1); N12 = Gaussian(mu = 1, sigma = 2)
N06 = Gaussian(); Ninf = Gaussian(0,Inf)
N01 * Ninf == N01
N01 * N12
N01 / N12
N01 + N12
N01 - N12
Pi(N12) == 1/(N12@sigma^2)
Tau(N12) == N12@mu/(N12@sigma^2)
Nnew = forget(N = N01, gamma = 0.01, t = 100)
isapprox(Nnew, Gaussian(N01@mu,sqrt(N01@sigma^2+100*(0.01^2))), tol=1e-6)
[Package TrueSkillThroughTime version 0.1.1 Index]