gap.fillview {TrendSLR} | R Documentation |
Inspect gap-filling options for mean sea level records.
Description
Inspect gap-filling options for mean sea level records.
Usage
gap.fillview(object, station_name = " ", fillgaps = 1)
Arguments
object |
an annual average mean sea level time series (refer Warning: If input data files do not conform to these pre-conditions, the analysis will be terminated. It should be further noted that the existence of long period oscillations in global mean sea level have been well recognised in the literature (eg. Chambers et al. (2012); Minobe (1999)). Therefore, in order to be effective for climate change and sea level research, time series input files are recommended to have a minimum length of at least 80 years in order that the analysis can identify and isloate such signals. Time series less than 80 years in length will be analysed but a warning will be displayed. |
station_name |
character string, providing the name of the data record. Note: This field can be left blank, however, it is retained for use in banner labelling of all plotting and pdf outputs. |
fillgaps |
numeric, provides 5 alternative gap filling procedures for missing data. The following options are available:
Note: Gap filled portions of the time series are denoted in red on the default screen plot. This is done specifically to provide ready visual observation to discern if the selected gap filling method provides an appropriate estimate within the gaps in keeping with the remainder of the historical record. Depending on the nature of the record and extent of gaps, some trial and error between alternatives might be necessary to optimise gap filling. |
Details
This function permits visual screen checking of various gap-filling
options prior to undertaking the full trend analysis (refer msl.trend
).
The returned object can also be used directly as input to the custom.trend
function.
Value
An object of class “gap.fillview” is returned with the following elements:
- $Station.Name:
the name of the data record.
- $Summary:
a summary data frame of relevant parameters relating to the inputted annual average data set and filled time series, including:
$Year: input data;
$MSL: input data;
$FilledTS: gap-filled time series.
- $Fillgaps:
the procedure used to fill the time series.
References
Chambers, D.P., Merrifield, M.A., and Nerem, R.S., 2012. Is there a 60 year oscillation in global mean sea level? Geophysical Research Letters, 39(18).
Minobe, S., 1999. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophysical Research Letters, 26(7), pp.855-858.
Watson, P.J., 2018. Improved Techniques to Estimate Mean Sea Level, Velocity and Acceleration from Long Ocean Water Level Time Series to Augment Sea Level (and Climate Change) Research. PhD Thesis, University of New South Wales, Sydney, Australia.
See Also
msl.trend
, igapfill
,
na.approx
, na.interpolation
,
na.ma
, ts
.
Examples
# -------------------------------------------------------------------------
# View different options for filling the Baltimore annual mean sea level record.
# -------------------------------------------------------------------------
data(Balt) # Baltimore mean sea level record
ts1 <- ts(Balt[2], start = Balt[1, 1]) # create time series input object
g <- gap.fillview(ts1, station_name = "Baltimore", fillgaps = 1) # SSA
g <- gap.fillview(ts1, station_name = "Baltimore", fillgaps = 2) # Linear interpolation
g <- gap.fillview(ts1, station_name = "Baltimore", fillgaps = 3) # Cubic spline interpolation
g <- gap.fillview(ts1, station_name = "Baltimore", fillgaps = 4) # Stineman's interpolation
g <- gap.fillview(ts1, station_name = "Baltimore", fillgaps = 5) # Weighted moving average
str(g) # Check structure of outputted object