| yjTransform {Transform} | R Documentation | 
Yeo- Johnson Transformation for Normality
Description
yjTransform performs Yeo- Johnson transformation for normality of a variable and provides graphical analysis.  
Usage
yjTransform(data, lambda = seq(-3,3,0.01), plot = TRUE, alpha = 0.05, 
  verbose = TRUE)Arguments
| data | a numeric vector of data values. | 
| lambda | a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01. | 
| plot | a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. | 
| alpha | the level of significance to check the normality after transformation. Default is set to alpha = 0.05. | 
| verbose | a logical for printing output to R console. | 
Details
Denote y the variable at the original scale and y' the transformed variable. The Yeo-Johnson power transformation is defined by:
y' = \left\{ \begin{array}{ll}
    \frac{(y+1)^\lambda-1}{\lambda} \mbox{ ,  if $\lambda \neq 0, y \geq 0$} \cr
    \log(y+1) \mbox{ , if $\lambda = 0, y \geq 0$} \cr
    \frac{(1-y)^{2-\lambda}-1}{\lambda-2} \mbox{ ,  if $\lambda \neq 2, y < 0$} \cr
    -\log(1-y) \mbox{ ,  if $\lambda = 2, y < 0$} 
    \end{array} \right.
Value
A list with class "yj" containing the following elements:
| method | method to estimate Yeo-Johnson transformation parameter | 
| lambda.hat | estimate of Yeo-Johnson transformation parameter | 
| statistic | Shapiro-Wilk test statistic for transformed data | 
| p.value | Shapiro-Wilk test p.value for transformed data | 
| alpha | level of significance to assess normality | 
| tf.data | transformed data set | 
| var.name | variable name | 
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
Yeo, I.K., Johnson, R.A. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87:4, 954–9.
Examples
data <- cars$dist
library(Transform)
out <- yjTransform(data)
out$lambda.hat # the estimate of Yeo- Johnson parameter based on Shapiro-Wilk test statistic 
out$p.value # p.value of Shapiro-Wilk test for transformed data 
out$tf.data # transformed data set