mdTransform {Transform} | R Documentation |
Modulus Transformation for Normality
Description
mdTransform
performs Modulus transformation for normality of a variable and provides graphical analysis.
Usage
mdTransform(data, lambda = seq(-3,3,0.01), plot = TRUE, alpha = 0.05,
verbose = TRUE)
Arguments
data |
a numeric vector of data values. |
lambda |
a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01. |
plot |
a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. |
alpha |
the level of significance to check the normality after transformation. Default is set to alpha = 0.05. |
verbose |
a logical for printing output to R console. |
Details
Denote y
the variable at the original scale and y'
the transformed variable. The Modulus power transformation is defined by:
y' = \left\{ \begin{array}{ll}
Sign(y)\frac{(|y|+1)^\lambda-1}{\lambda} \mbox{ , if $\lambda \neq 0$} \cr
Sign(y) \log{(|y|+1)} \mbox{ , if $\lambda = 0$}
\end{array} \right.
Value
A list with class "md" containing the following elements:
method |
method to estimate Modulus transformation parameter |
lambda.hat |
estimate of Modulus transformation parameter |
statistic |
Shapiro-Wilk test statistic for transformed data |
p.value |
Shapiro-Wilk test p.value for transformed data |
alpha |
level of significance to assess normality |
tf.data |
transformed data set |
var.name |
variable name |
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
John, J., Draper, N.R. (1980). An Alternative Family of Transformations. Journal of the Royal Statistical Society Series C: Applied Statistics, 29:2, 190–7.
Examples
data <- cars$dist
library(Transform)
out <- mdTransform(data)
out$lambda.hat # the estimate of Modulus parameter based on Shapiro-Wilk test statistic
out$p.value # p.value of Shapiro-Wilk test for transformed data
out$tf.data # transformed data set