| lsTransform {Transform} | R Documentation | 
Log-shift Transformation for Normality
Description
lsTransform performs Log-shift transformation for normality of a variable and provides graphical analysis.  
Usage
lsTransform(data, lambda = seq(-3,3,0.01), plot = TRUE, alpha = 0.05, 
  verbose = TRUE)Arguments
| data | a numeric vector of data values. | 
| lambda | a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01. | 
| plot | a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. | 
| alpha | the level of significance to check the normality after transformation. Default is set to alpha = 0.05. | 
| verbose | a logical for printing output to R console. | 
Details
Denote y the variable at the original scale and y' the transformed variable. The Log-shift power transformation is defined by:
y' = \log({y + \lambda })
Value
A list with class "ls" containing the following elements:
| method | method to estimate Log-shift transformation parameter | 
| lambda.hat | estimate of Log-shift transformation parameter | 
| statistic | Shapiro-Wilk test statistic for transformed data | 
| p.value | Shapiro-Wilk test p.value for transformed data | 
| alpha | level of significance to assess normality | 
| tf.data | transformed data set | 
| var.name | variable name | 
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
Feng, Q., Hannig, J., Marron, J. (2015). A Note on Automatic Data Transformation. Stat, 5:1, 82–7.
Examples
data <- cars$dist
library(Transform)
out <- lsTransform(data)
out$lambda.hat # the estimate of Log-shift parameter based on Shapiro-Wilk test statistic 
out$p.value # p.value of Shapiro-Wilk test for transformed data 
out$tf.data # transformed data set