| lgTransform {Transform} | R Documentation | 
Log Transformation for Normality
Description
lgTransform performs Log transformation for normality of a variable and provides graphical analysis.  
Usage
lgTransform(data, lambda2 = NULL, plot = TRUE, alpha = 0.05, verbose = TRUE)Arguments
| data | a numeric vector of data values. | 
| lambda2 | a numeric for an additional shifting parameter. Default is set to lambda2 = NULL. | 
| plot | a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. | 
| alpha | the level of significance to check the normality after transformation. Default is set to alpha = 0.05. | 
| verbose | a logical for printing output to R console. | 
Details
Denote y the variable at the original scale and y' the transformed variable. The Log power transformation is defined by:
y' = \log(y)
If the data include any nonpositive observations, a shifting parameter \lambda_2 can be included in the transformation given by:
y' = \log(y+\lambda_2)
Value
A list with class "lg" containing the following elements:
| method | method name | 
| lambda2 | additional shifting parameter | 
| statistic | Shapiro-Wilk test statistic for transformed data | 
| p.value | Shapiro-Wilk test p.value for transformed data | 
| alpha | level of significance to assess normality | 
| tf.data | transformed data set | 
| var.name | variable name | 
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
Box, G.E., Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26:2, 211–43.
Examples
data <- cars$dist
library(Transform)
out <- lgTransform(data)
out$p.value # p.value of Shapiro-Wilk test for transformed data 
out$tf.data # transformed data set