glTransform {Transform} | R Documentation |
Glog Transformation for Normality
Description
glTransform
performs Glog transformation for normality of a variable and provides graphical analysis.
Usage
glTransform(data, plot = TRUE, alpha = 0.05, verbose = TRUE)
Arguments
data |
a numeric vector of data values. |
plot |
a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. |
alpha |
the level of significance to check the normality after transformation. Default is set to alpha = 0.05. |
verbose |
a logical for printing output to R console. |
Details
Denote y
the variable at the original scale and y'
the transformed variable. The Glog power transformation is defined by:
y' = \log(y+ \sqrt{y^2+1})
Value
A list with class "gl" containing the following elements:
method |
method name |
statistic |
Shapiro-Wilk test statistic for transformed data |
p.value |
Shapiro-Wilk test p.value for transformed data |
alpha |
level of significance to assess normality |
tf.data |
transformed data set |
var.name |
variable name |
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
Durbin, B.P., Hardin, J.S., Hawkins, D.M., Rocke, D.M. (2002). A Variance-Stabilizing Transformation for Gene-expression Microarray Data. Bioinformatics, 18(suppl_1), 105–110.
Examples
data <- cars$dist
library(Transform)
out <- glTransform(data)
out$p.value # p.value of Shapiro-Wilk test for transformed data
out$tf.data # transformed data set