| bcTransform {Transform} | R Documentation | 
Box-Cox Transformation for Normality
Description
bcTransform performs Box-Cox transformation for normality of a variable and provides graphical analysis.  
Usage
bcTransform(data, lambda = seq(-3,3,0.01), lambda2 = NULL, plot = TRUE, 
  alpha = 0.05, verbose = TRUE)Arguments
| data | a numeric vector of data values. | 
| lambda | a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01. | 
| lambda2 | a numeric for an additional shifting parameter. Default is set to lambda2 = NULL. | 
| plot | a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE. | 
| alpha | the level of significance to check the normality after transformation. Default is set to alpha = 0.05. | 
| verbose | a logical for printing output to R console. | 
Details
Denote y the variable at the original scale and y' the transformed variable. The Box-Cox power transformation is defined by:
y' = \left\{ \begin{array}{ll}
    \frac{y^\lambda - 1}{\lambda} \mbox{ ,  if $\lambda \neq 0$} \cr
    log(y) \mbox{ , if $\lambda = 0$} 
    \end{array} \right.
If the data include any non- positive observations, a shifting parameter \lambda_2 can be included in the transformation given by:
y' = \left\{ \begin{array}{ll}
    \frac{(y + \lambda_2)^\lambda - 1}{\lambda} \mbox{ ,  if $\lambda \neq 0$} \cr
    log(y + \lambda_2) \mbox{ , if $\lambda = 0$} 
    \end{array} \right.
Value
A list with class "bc" containing the following elements:
| method | method to estimate Box-Cox transformation parameter | 
| lambda.hat | estimate of Box-Cox Power transformation parameter | 
| lambda2 | additional shifting parameter | 
| statistic | Shapiro-Wilk test statistic for transformed data | 
| p.value | Shapiro-Wilk test p.value for transformed data | 
| alpha | level of significance to assess normality | 
| tf.data | transformed data set | 
| var.name | variable name | 
Author(s)
Muge Coskun Yildirim, Osman Dag
References
Asar, O., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via Goodness of Fit Tests. Communications in Statistics - Simulation and Computation, 46:1, 91–105.
Box, G.E., Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26:2, 211–43.
Examples
data <- cars$dist
library(Transform)
out <- bcTransform(data)
out$lambda.hat # the estimate of Box-Cox parameter based on Shapiro-Wilk test statistic 
out$p.value # p.value of Shapiro-Wilk test for transformed data 
out$tf.data # transformed data set