TransModel {TransModel} | R Documentation |
Main function for fitting the linear transformation models for right censored data
Description
This function is used to fit a linear transformation model, such as the proportional hazards model or proportional odds model, to the right censored survival data.
Usage
TransModel(formula = formula(data), data = parent.frame(), r, CICB.st, subset,
dx, iter.max, num.sim)
Arguments
formula |
A survival formula based on the Surv() function, containg survival time, right censoring indicator and coavariates. |
data |
Data set with all the variables needed in formula. |
r |
Parameter in the hazard function, used to define different linear models. See details for more information. |
CICB.st |
Whether or not the perturbation for deriving the confidence intervals and confidence bands of survival estimates will be done. The default value is FALSE. |
subset |
Conditions for subsetting the dataset. |
dx |
Convergence tolerance. Default is 0.001. |
iter.max |
Maximum number of iterations before convergence. Default is 100. |
num.sim |
The number of perturbation, only works when CICB.st=TRUE. Default is 200. |
Details
In the linear transformation model H(t)=-b'z+e, the hazard function for error term e is defined as: h(x)=exp(x)/(1+r*exp(x)), where the parameter r must be a non-negative value and can be changed for different models. For example, r=0 refers to the proportional hazards model and r=1 refers to a proportional odds model. The default value for r is 0.
Value
coefficients |
Estimated coefficients for covariates in the specified linear transformation model. |
vcov |
Estimated covariance matix for the coefficients. |
converged |
Convergence status, 0 indicates converged, and number of iterations used for convergence. |
References
Kani Chen, et al., Semiparametric analysis of transformation models with censored data. Biometrika, 89(3), 659-668, 2002.
Examples
beta0 = c(1,-1)
# Fit proportional hazards model
data(PH_examp)
mod1<-TransModel(formula=Surv(time,status)~gender+age,data=PH_examp,r=0)
print(mod1)
summary(mod1)
mod1$coefficients
mod1$vcov
mod1$converged
# Fit proportional odds model
data(PO_examp)
mod2=TransModel(Surv(time,status)~gender+age,data=PO_examp,r=1)
print(mod2)
summary(mod2)