canocov {ToolsForCoDa} | R Documentation |
Canonical correlation analysis.
Description
Function canocov
performs a canonical correlation analysis. It
operates on raw data matrices, which are only centered in the
program. It uses generalized inverses and can deal with structurally
singular covariance matrices.
Usage
canocov(X, Y)
Arguments
X |
The n times p X matrix of observations |
Y |
The n times q Y matrix of observations |
Details
canocov
computes the solution by a singular value
decomposition of the transformed between set covariance matrix.
Value
Returns a list with the following results
ccor |
the canonical correlations |
A |
canonical weights of the X variables |
B |
canonical weights of the Y variables |
U |
canonical X variates |
V |
canonical Y variates |
Fs |
biplot markers for X variables (standard coordinates) |
Gs |
biplot markers for Y variables (standard coordinates) |
Fp |
biplot markers for X variables (principal coordinates) |
Gp |
biplot markers for Y variables (principal coordinates) |
Rxu |
canonical loadings, (correlations X variables, canonical X variates) |
Rxv |
canonical loadings, (correlations X variables, canonical Y variates) |
Ryu |
canonical loadings, (correlations Y variables, canonical X variates) |
Ryv |
canonical loadings, (correlations Y variables, canonical Y variates) |
Sxu |
covariance X variables, canonical X variates |
Sxv |
covariance X variables, canonical Y variates |
Syu |
covariance Y variables, canonical X variates |
Syv |
covariance Y variables, canonical Y variates |
fitRxy |
goodness of fit of the between-set correlation matrix |
fitXs |
adequacy coefficients of X variables |
fitXp |
redundancy coefficients of X variables |
fitYs |
adequacy coefficients of Y variables |
fitYp |
redundancy coefficients of Y variables |
Author(s)
Jan Graffelman jan.graffelman@upc.edu
References
Hotelling, H. (1935) The most predictable criterion. Journal of Educational Psychology (26) pp. 139-142.
Hotelling, H. (1936) Relations between two sets of variates. Biometrika (28) pp. 321-377.
Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis. New Jersey: Prentice Hall.
See Also
Examples
set.seed(123)
X <- matrix(runif(75),ncol=3)
Y <- matrix(runif(75),ncol=3)
cca.results <- canocov(X,Y)