est.analysis {Tlasso} | R Documentation |
Estimation Errors and TPR/TNR
Description
Compute estimation errors and TPR/TNR of optimization for sparse tensor graphical models
Usage
est.analysis(Omega.hat.list, Omega.true.list, offdiag = TRUE)
Arguments
Omega.hat.list |
list of estimation of precision matrices of tensor, i.e., |
Omega.true.list |
list of true precision matrices of tensor, i.e., |
offdiag |
logical; indicate if excludes diagnoal when computing performance measures.
If |
Details
This function computes performance measures of optimazation for sparse tensor graphical models. Errors are measured in Frobenius norm and Max norm. Model selection measures are TPR and TNR. All these measures are computed in each mode, average across all modes, and kronecker production of precision matrices.
Value
A list, named Out
, of following performance measures:
Out$error.kro | error in Frobenius norm of kronecker product |
Out$tpr.kro | TPR of kronecker product |
Out$tnr.kro | TNR of kronecker product |
Out$av.error.f | averaged Frobenius norm error across all modes |
Out$av.error.max | averaged Max norm error across all modes |
Out$av.tpr | averaged TPR across all modes |
Out$av.tnr | averaged TNR across all modes |
Out$error.f | vector; error in Frobenius norm of each mode |
Out$error.max | vector; error in Max norm of each mode |
Out$tpr | vector; TPR of each mode |
Out$tnr | vector; TNR of each mode |
Author(s)
Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, Guang Cheng.
See Also
Tlasso.fit
, NeighborOmega
, ChainOmega
Examples
m.vec = c(5,5,5) # dimensionality of a tensor
n = 5 # sample size
k=1 # index of interested mode
Omega.true.list = list()
Omega.true.list[[1]] = ChainOmega(m.vec[1], sd = 1)
Omega.true.list[[2]] = ChainOmega(m.vec[2], sd = 2)
Omega.true.list[[3]] = ChainOmega(m.vec[3], sd = 3)
lambda.thm = 20*c( sqrt(log(m.vec[1])/(n*prod(m.vec))),
sqrt(log(m.vec[2])/(n*prod(m.vec))),
sqrt(log(m.vec[3])/(n*prod(m.vec))))
DATA=Trnorm(n,m.vec,type='Chain')
# obersavations from tensor normal distribution
out.tlasso = Tlasso.fit(DATA,T=1,lambda.vec = lambda.thm)
# output is a list of estimation of precision matrices
est.analysis(out.tlasso, Omega.true.list, offdiag=TRUE)
# generate a list of performance measures