final.tree {TimeVTree} | R Documentation |
Finding the Final Tree After Bootstrap
Description
final.tree
uses bias-corrected costs obtained from bootstrap
function and the predetermined penalty parameter to find the optimal tree from the set of subtrees.
Usage
final.tree(nodetree=nodetree, subtrees=subtrees, omega, alphac=2)
Arguments
nodetree |
Fully grown tree from the original data. Output from |
subtrees |
Pruned subtrees from the original data. Output from |
omega |
Bias (i.e. third index of the output) from |
alphac |
Predetermined penalty parameter |
Details
final.tree
is part of the bootstrap
function but can be used to try different penalty parameters without re-running bootstrap
.
Value
subtree |
output from |
final |
A tree with lowest cost value after applying predetermined penalty |
References
Xu, R. and Adak, S. (2002), Survival Analysis with Time-Varying Regression Effects Using a Tree-Based Approach. Biometrics, 58: 305-315.
Examples
## Not run:
data('alcohol')
require(survival)
coxtree <- coxph.tree(alcohol[,'time'], alcohol[,'event'],
x = alcohol[,'alc', drop = FALSE], D = 4)
nodetree <- output.coxphout(coxtree)
subtrees <- prune(nodetree)
store.mult.cont <- bootstrap(B=20, nodetree, subtrees, alcohol[,'time'],
alcohol[,'event'], x = alcohol[,'alc', drop = FALSE],
D=4,minfail=20, alphac=2)
Balph <- 0.5 * 2 * log(nrow(alcohol))
final.tree <- final.tree(nodetree, subtrees, store.mult.cont[[3]], alphac= Balph)
## End(Not run)