util_t_aic {TidyDensity} | R Documentation |
Calculate Akaike Information Criterion (AIC) for t Distribution
Description
This function estimates the parameters of a t distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
Usage
util_t_aic(.x)
Arguments
.x |
A numeric vector containing the data to be fitted to a t distribution. |
Details
This function calculates the Akaike Information Criterion (AIC) for a t distribution fitted to the provided data.
This function fits a t distribution to the input data using maximum likelihood estimation and then computes the Akaike Information Criterion (AIC) based on the fitted distribution.
Value
The AIC value calculated based on the fitted t distribution to the provided data.
Author(s)
Steven P. Sanderson II, MPH
See Also
rt
for generating t-distributed data,
optim
for optimization.
Other Utility:
check_duplicate_rows()
,
convert_to_ts()
,
quantile_normalize()
,
tidy_mcmc_sampling()
,
util_beta_aic()
,
util_binomial_aic()
,
util_cauchy_aic()
,
util_chisq_aic()
,
util_exponential_aic()
,
util_f_aic()
,
util_gamma_aic()
,
util_generalized_beta_aic()
,
util_generalized_pareto_aic()
,
util_geometric_aic()
,
util_hypergeometric_aic()
,
util_inverse_burr_aic()
,
util_inverse_pareto_aic()
,
util_inverse_weibull_aic()
,
util_logistic_aic()
,
util_lognormal_aic()
,
util_negative_binomial_aic()
,
util_normal_aic()
,
util_paralogistic_aic()
,
util_pareto1_aic()
,
util_pareto_aic()
,
util_poisson_aic()
,
util_triangular_aic()
,
util_uniform_aic()
,
util_weibull_aic()
,
util_zero_truncated_binomial_aic()
,
util_zero_truncated_geometric_aic()
,
util_zero_truncated_negative_binomial_aic()
,
util_zero_truncated_poisson_aic()
Examples
# Generate t-distributed data
set.seed(123)
x <- rt(100, df = 5, ncp = 0.5)
# Calculate AIC for the generated data
util_t_aic(x)