| util_lognormal_aic {TidyDensity} | R Documentation |
Calculate Akaike Information Criterion (AIC) for Log-Normal Distribution
Description
This function estimates the meanlog and sdlog parameters of a log-normal distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
Usage
util_lognormal_aic(.x)
Arguments
.x |
A numeric vector containing the data to be fitted to a log-normal distribution. |
Details
This function calculates the Akaike Information Criterion (AIC) for a log-normal distribution fitted to the provided data.
This function fits a log-normal distribution to the provided data using maximum likelihood estimation. It estimates the meanlog and sdlog parameters of the log-normal distribution using maximum likelihood estimation. Then, it calculates the AIC value based on the fitted distribution.
Initial parameter estimates: The function uses the method of moments estimates as starting points for the meanlog and sdlog parameters of the log-normal distribution.
Optimization method: The function uses the optim function for optimization. You might explore different optimization methods within optim for potentially better performance.
Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended to also assess the goodness-of-fit of the chosen model using visualization and other statistical tests.
Value
The AIC value calculated based on the fitted log-normal distribution to the provided data.
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Utility:
check_duplicate_rows(),
convert_to_ts(),
quantile_normalize(),
tidy_mcmc_sampling(),
util_beta_aic(),
util_binomial_aic(),
util_cauchy_aic(),
util_chisq_aic(),
util_exponential_aic(),
util_f_aic(),
util_gamma_aic(),
util_generalized_beta_aic(),
util_generalized_pareto_aic(),
util_geometric_aic(),
util_hypergeometric_aic(),
util_inverse_burr_aic(),
util_inverse_pareto_aic(),
util_inverse_weibull_aic(),
util_logistic_aic(),
util_negative_binomial_aic(),
util_normal_aic(),
util_paralogistic_aic(),
util_pareto1_aic(),
util_pareto_aic(),
util_poisson_aic(),
util_t_aic(),
util_triangular_aic(),
util_uniform_aic(),
util_weibull_aic(),
util_zero_truncated_binomial_aic(),
util_zero_truncated_geometric_aic(),
util_zero_truncated_negative_binomial_aic(),
util_zero_truncated_poisson_aic()
Examples
# Example 1: Calculate AIC for a sample dataset
set.seed(123)
x <- rlnorm(100, meanlog = 0, sdlog = 1)
util_lognormal_aic(x)