| util_logistic_param_estimate {TidyDensity} | R Documentation |
Estimate Logistic Parameters
Description
The function will return a list output by default, and if the parameter
.auto_gen_empirical is set to TRUE then the empirical data given to the
parameter .x will be run through the tidy_empirical() function and combined
with the estimated logistic data.
Three different methods of shape parameters are supplied:
MLE
MME
MMUE
Usage
util_logistic_param_estimate(.x, .auto_gen_empirical = TRUE)
Arguments
.x |
The vector of data to be passed to the function. |
.auto_gen_empirical |
This is a boolean value of TRUE/FALSE with default
set to TRUE. This will automatically create the |
Details
This function will attempt to estimate the logistic location and scale parameters given some vector of values.
Value
A tibble/list
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Parameter Estimation:
util_bernoulli_param_estimate(),
util_beta_param_estimate(),
util_binomial_param_estimate(),
util_burr_param_estimate(),
util_cauchy_param_estimate(),
util_chisquare_param_estimate(),
util_exponential_param_estimate(),
util_f_param_estimate(),
util_gamma_param_estimate(),
util_generalized_beta_param_estimate(),
util_generalized_pareto_param_estimate(),
util_geometric_param_estimate(),
util_hypergeometric_param_estimate(),
util_inverse_burr_param_estimate(),
util_inverse_pareto_param_estimate(),
util_inverse_weibull_param_estimate(),
util_lognormal_param_estimate(),
util_negative_binomial_param_estimate(),
util_normal_param_estimate(),
util_paralogistic_param_estimate(),
util_pareto1_param_estimate(),
util_pareto_param_estimate(),
util_poisson_param_estimate(),
util_t_param_estimate(),
util_triangular_param_estimate(),
util_uniform_param_estimate(),
util_weibull_param_estimate(),
util_zero_truncated_binomial_param_estimate(),
util_zero_truncated_geometric_param_estimate(),
util_zero_truncated_negative_binomial_param_estimate(),
util_zero_truncated_poisson_param_estimate()
Other Logistic:
tidy_logistic(),
tidy_paralogistic(),
util_logistic_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
x <- mtcars$mpg
output <- util_logistic_param_estimate(x)
output$parameter_tbl
output$combined_data_tbl |>
tidy_combined_autoplot()
t <- rlogis(50, 2.5, 1.4)
util_logistic_param_estimate(t)$parameter_tbl