| util_hypergeometric_param_estimate {TidyDensity} | R Documentation |
Estimate Hypergeometric Parameters
Description
This function will attempt to estimate the geometric prob parameter
given some vector of values .x. Estimate m, the number of white balls in
the urn, or m+n, the total number of balls in the urn, for a hypergeometric
distribution.
Usage
util_hypergeometric_param_estimate(
.x,
.m = NULL,
.total = NULL,
.k,
.auto_gen_empirical = TRUE
)
Arguments
.x |
A non-negative integer indicating the number of white balls out of a
sample of size |
.m |
Non-negative integer indicating the number of white balls in the urn.
You must supply |
.total |
A positive integer indicating the total number of balls in the
urn (i.e., m+n). You must supply |
.k |
A positive integer indicating the number of balls drawn without replacement from the urn. You cannot have missing values. |
.auto_gen_empirical |
This is a boolean value of TRUE/FALSE with default
set to TRUE. This will automatically create the |
Details
This function will see if the given vector .x is a numeric integer.
It will attempt to estimate the prob parameter of a geometric distribution.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
Let .x be an observation from a hypergeometric distribution with parameters
.m = M, .n = N, and .k = K. In R nomenclature, .x represents
the number of white balls drawn out of a sample of .k balls drawn without
replacement from an urn containing .m white balls and .n black balls.
The total number of balls in the urn is thus .m + .n. Denote the total
number of balls by T = .m + .n
Value
A tibble/list
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Parameter Estimation:
util_bernoulli_param_estimate(),
util_beta_param_estimate(),
util_binomial_param_estimate(),
util_burr_param_estimate(),
util_cauchy_param_estimate(),
util_chisquare_param_estimate(),
util_exponential_param_estimate(),
util_f_param_estimate(),
util_gamma_param_estimate(),
util_generalized_beta_param_estimate(),
util_generalized_pareto_param_estimate(),
util_geometric_param_estimate(),
util_inverse_burr_param_estimate(),
util_inverse_pareto_param_estimate(),
util_inverse_weibull_param_estimate(),
util_logistic_param_estimate(),
util_lognormal_param_estimate(),
util_negative_binomial_param_estimate(),
util_normal_param_estimate(),
util_paralogistic_param_estimate(),
util_pareto1_param_estimate(),
util_pareto_param_estimate(),
util_poisson_param_estimate(),
util_t_param_estimate(),
util_triangular_param_estimate(),
util_uniform_param_estimate(),
util_weibull_param_estimate(),
util_zero_truncated_binomial_param_estimate(),
util_zero_truncated_geometric_param_estimate(),
util_zero_truncated_negative_binomial_param_estimate(),
util_zero_truncated_poisson_param_estimate()
Other Hypergeometric:
tidy_hypergeometric(),
util_hypergeometric_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
th <- rhyper(10, 20, 30, 5)
output <- util_hypergeometric_param_estimate(th, .total = 50, .k = 5)
output$parameter_tbl
output$combined_data_tbl |>
tidy_combined_autoplot()