util_chisq_aic {TidyDensity}R Documentation

Calculate Akaike Information Criterion (AIC) for Chi-Square Distribution

Description

This function estimates the parameters of a chi-square distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.

Usage

util_chisq_aic(.x)

Arguments

.x

A numeric vector containing the data to be fitted to a chi-square distribution.

Details

This function calculates the Akaike Information Criterion (AIC) for a chi-square distribution fitted to the provided data.

Value

The AIC value calculated based on the fitted chi-square distribution to the provided data.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: check_duplicate_rows(), convert_to_ts(), quantile_normalize(), tidy_mcmc_sampling(), util_beta_aic(), util_binomial_aic(), util_cauchy_aic(), util_exponential_aic(), util_f_aic(), util_gamma_aic(), util_generalized_beta_aic(), util_generalized_pareto_aic(), util_geometric_aic(), util_hypergeometric_aic(), util_inverse_burr_aic(), util_inverse_pareto_aic(), util_inverse_weibull_aic(), util_logistic_aic(), util_lognormal_aic(), util_negative_binomial_aic(), util_normal_aic(), util_paralogistic_aic(), util_pareto1_aic(), util_pareto_aic(), util_poisson_aic(), util_t_aic(), util_triangular_aic(), util_uniform_aic(), util_weibull_aic(), util_zero_truncated_binomial_aic(), util_zero_truncated_geometric_aic(), util_zero_truncated_negative_binomial_aic(), util_zero_truncated_poisson_aic()

Examples

# Example 1: Calculate AIC for a sample dataset
set.seed(123)
x <- rchisq(30, df = 3)
util_chisq_aic(x)


[Package TidyDensity version 1.5.0 Index]