util_binomial_param_estimate {TidyDensity} | R Documentation |
Estimate Binomial Parameters
Description
This function will check to see if some given vector .x
is
either a numeric vector or a factor vector with at least two levels then it
will cause an error and the function will abort. The function will return a
list output by default, and if the parameter .auto_gen_empirical
is set to
TRUE
then the empirical data given to the parameter .x
will be run through
the tidy_empirical()
function and combined with the estimated binomial data.
Usage
util_binomial_param_estimate(.x, .size = NULL, .auto_gen_empirical = TRUE)
Arguments
.x |
The vector of data to be passed to the function. Must be numeric, and all values must be 0 <= x <= 1 |
.size |
Number of trials, zero or more. |
.auto_gen_empirical |
This is a boolean value of TRUE/FALSE with default
set to TRUE. This will automatically create the |
Details
This function will attempt to estimate the binomial p_hat and size parameters given some vector of values.
Value
A tibble/list
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_beta_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Binomial:
tidy_binomial()
,
tidy_negative_binomial()
,
tidy_zero_truncated_binomial()
,
tidy_zero_truncated_negative_binomial()
,
util_binomial_stats_tbl()
,
util_negative_binomial_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_binomial_stats_tbl()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_negative_binomial_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
tb <- rbinom(50, 1, .1)
output <- util_binomial_param_estimate(tb)
output$parameter_tbl
output$combined_data_tbl |>
tidy_combined_autoplot()