| util_bernoulli_param_estimate {TidyDensity} | R Documentation | 
Estimate Bernoulli Parameters
Description
This function will attempt to estimate the Bernoulli prob parameter
given some vector of values .x. The function will return a list output by default,
and  if the parameter .auto_gen_empirical is set to TRUE then the empirical
data given to the parameter .x will be run through the tidy_empirical()
function and combined with the estimated Bernoulli data.
Usage
util_bernoulli_param_estimate(.x, .auto_gen_empirical = TRUE)
Arguments
.x | 
 The vector of data to be passed to the function. Must be non-negative integers.  | 
.auto_gen_empirical | 
 This is a boolean value of TRUE/FALSE with default
set to TRUE. This will automatically create the   | 
Details
This function will see if the given vector .x is a numeric vector.
It will attempt to estimate the prob parameter of a Bernoulli distribution.
Value
A tibble/list
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Parameter Estimation: 
util_beta_param_estimate(),
util_binomial_param_estimate(),
util_burr_param_estimate(),
util_cauchy_param_estimate(),
util_chisquare_param_estimate(),
util_exponential_param_estimate(),
util_f_param_estimate(),
util_gamma_param_estimate(),
util_generalized_beta_param_estimate(),
util_generalized_pareto_param_estimate(),
util_geometric_param_estimate(),
util_hypergeometric_param_estimate(),
util_inverse_burr_param_estimate(),
util_inverse_pareto_param_estimate(),
util_inverse_weibull_param_estimate(),
util_logistic_param_estimate(),
util_lognormal_param_estimate(),
util_negative_binomial_param_estimate(),
util_normal_param_estimate(),
util_paralogistic_param_estimate(),
util_pareto1_param_estimate(),
util_pareto_param_estimate(),
util_poisson_param_estimate(),
util_t_param_estimate(),
util_triangular_param_estimate(),
util_uniform_param_estimate(),
util_weibull_param_estimate(),
util_zero_truncated_binomial_param_estimate(),
util_zero_truncated_geometric_param_estimate(),
util_zero_truncated_negative_binomial_param_estimate(),
util_zero_truncated_poisson_param_estimate()
Other Bernoulli: 
tidy_bernoulli(),
util_bernoulli_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
tb <- tidy_bernoulli(.prob = .1) |> pull(y)
output <- util_bernoulli_param_estimate(tb)
output$parameter_tbl
output$combined_data_tbl |>
  tidy_combined_autoplot()