read.mplus {ThurMod} | R Documentation |
Reads results from Mplus output file.
Description
This function reads and returns results from an Mplus output file.
Usage
read.mplus(blocks, itf, model, output_path, convergence = TRUE,
fit.stat = TRUE, loading = TRUE, cor = TRUE, intercept = TRUE,
threshold = TRUE, resvar = TRUE, standardized = FALSE)
Arguments
blocks |
A matrix defining the blocks of the model. The number of rows must be the number of blocks, each row represents a block and contains the item numbers. The number of columns present the number of items per block. |
itf |
A vector defining the items-to-factor relation. For example 'c(1,1,1,2,2,2)' defines six items, the first three correspond to factor 1, the second three correspond to factor 2. |
model |
A descriptor for the model. Can be one of ''lmean'', ''uc'‘, '’irt'‘ or '’simple2'‘, '’simple3'‘ or '’simple5''. The Number behind the ''simple'' statement defines the Thurstone case. |
output_path |
Path to the Mplus output file. Defaults to ''myFC_model.out''. |
convergence |
Logical. Should a message for convergence be returned? Defaults to 'TRUE'. |
fit.stat |
Logical. Should fit statistics be returned? Defaults to 'TRUE'. |
loading |
Logical. Should loading estimates be returned? Defaults to 'TRUE'. |
cor |
Logical. Should latent correlation estimates be returned? Defaults to 'TRUE'. |
intercept |
Logical. Should intercepts be returned? Does only work for ‘model = ’lmean''. Defaults to 'TRUE'. |
threshold |
Logical. Should thresholds be returned? Does only work for ‘model = ’uc'‘ or '’irt''. Defaults to 'TRUE'. |
resvar |
Logical. Should residual variances be returned? Defaults to 'TRUE'. |
standardized |
Logical. Should standardized values be returned? Defaults to 'FALSE'. |
Value
Returns a list containing the specified results, after model analysis, by reading the results from the 'output_path'.
Examples
# read and save data set FC
data(FC)
write.table(FC,paste0(tempdir(),'/','my_data.dat'),quote=FALSE, sep=" ",
col.names = FALSE, row.names = FALSE)
# set seed and define blocks
set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)
# define the item-to-factor relation
itf <- rep(1:3,5)
# perform analysis
## Not run:
fit.mplus(blocksort(blocks),itf,'irt',data_path = 'mydata.dat', data_full = TRUE,
input_path = paste0(tempdir(),'/','myFC_model'))
# After estimation
read.mplus(blocks,itf,'irt',output_path = paste0(tempdir(),'/','myFC_model.out'))
## End(Not run)