tv_sentiment_index_all_coefs {TextForecast} | R Documentation |
TV sentiment index using all positive and negative coefficients.
Description
TV sentiment index using all positive and negative coefficients.
Usage
tv_sentiment_index_all_coefs(
x,
w,
y,
alpha,
lambda,
newx,
family,
scaled,
k_mov_avg,
type_mov_avg
)
Arguments
x |
A matrix of variables to be selected by shrinkrage methods. |
w |
Optional Argument. A matrix of variables to be selected by shrinkrage methods. |
y |
the response variable. |
alpha |
the alpha required in glmnet. |
lambda |
the lambda required in glmnet. |
newx |
Matrix that selection will be applied. Useful for time series, when we need the observation at time t. |
family |
the glmnet family. |
scaled |
Set TRUE for scale and FALSE for no scale. |
k_mov_avg |
The moving average order. |
type_mov_avg |
The type of moving average. See movavg. |
Value
A list with the net, postive and negative sentiment index. The net time-varying sentiment index. The index is based on the word/term counting and is computed using: tv_index=(pos-neg)/(pos+neg). The postive sentiment index is computed using: tv_index_pos=pos/(pos+neg) and the negative tv_index_neg=neg/(pos+neg).
Examples
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
data("stock_data")
data("news_data")
y=as.matrix(stock_data[,2])
w=as.matrix(stock_data[,3])
data("news_data")
X=news_data[,2:ncol(news_data)]
x=as.matrix(X)
grid_alphas=0.05
cont_folds=TRUE
t=length(y)
optimal_alphas=optimal_alphas(x=x[1:(t-1),],
y=y[2:t],grid_alphas=grid_alphas,cont_folds=TRUE,family="gaussian")
tv_idx=tv_sentiment_index_all_coefs(x=x[1:(t-1),],y=y[2:t],alpha = optimal_alphas[1],
lambda = optimal_alphas[2],newx=x,
scaled = TRUE,k_mov_avg = 4,type_mov_avg = "s")