bootstrap_test {TestingSimilarity} | R Documentation |
Bootstrap test for the equivalence of dose response curves via the maximum absolute deviation
Description
Function for testing whether two dose response curves can be assumed as equal concerning the hypotheses
H_0: \max_{d\in\mathcal{D}} |m_1(d,\beta_1)-m_2(d,\beta_2)|\geq \epsilon\ vs.\
H_1: \max_{d\in\mathcal{D}} |m_1(d,\beta_1)-m_2(d,\beta_2)|< \epsilon,
where
\mathcal{D}
denotes the dose range. See https://doi.org/10.1080/01621459.2017.1281813 for details.
Usage
bootstrap_test(data1, data2, m1, m2, epsilon, B = 2000, bnds1 = NULL,
bnds2 = NULL, plot = FALSE, scal = NULL, off = NULL)
Arguments
data1 , data2 |
data frame for each of the two groups containing the variables referenced in dose and resp |
m1 , m2 |
model types. Built-in models are "linlog", "linear", "quadratic", "emax", "exponential", "sigEmax", "betaMod" and "logistic" |
epsilon |
positive argument specifying the hypotheses of the test |
B |
number of bootstrap replications. If missing, default value of B is 5000 |
bnds1 , bnds2 |
bounds for the non-linear model parameters. If not specified, they will be generated automatically |
plot |
if TRUE, a plot of the absolute difference curve of the two estimated models will be given |
scal , off |
fixed dose scaling/offset parameter for the Beta/ Linear in log model. If not specified, they are 1.2*max(dose) and 1 respectively |
Value
A list containing the p.value, the maximum absolute difference of the models, the estimated model parameters and the number of bootstrap replications. Furthermore plots of the two models are given.
References
https://doi.org/10.1080/01621459.2017.1281813
Examples
data(IBScovars)
male<-IBScovars[1:118,]
female<-IBScovars[119:369,]
bootstrap_test(male,female,"linear","emax",epsilon=0.35,B=300)