univariate {TestDimorph} | R Documentation |
Univariate Analysis Of Sexual Dimorphism
Description
Calculation and visualization of the differences in degree sexual dimorphism between multiple populations using a modified one way ANOVA and summary statistics as input
Usage
univariate(
x,
Pop = 1,
type_anova = "II",
interact_anova = TRUE,
es_anova = "none",
pairwise = FALSE,
padjust = "none",
...,
lower.tail = FALSE,
CI = 0.95,
digits = 4
)
Arguments
x |
A data frame containing summary statistics. |
Pop |
Number of the column containing populations' names, Default: 1 |
type_anova |
type of ANOVA test "I","II" or "III", Default:"II". |
interact_anova |
Logical; if TRUE calculates interaction effect, Default: TRUE. |
es_anova |
Type of effect size either "f2" for f squared,"eta2" for eta squared, "omega2" for omega squared or "none", Default:"none". |
pairwise |
Logical; if TRUE runs multiple pairwise comparisons on different populations using t_greene Default: FALSE |
padjust |
Method of p.value adjustment for multiple comparisons following p.adjust Default: "none". |
... |
Additional arguments that could be passed to the t_greene function |
lower.tail |
Logical; if TRUE probabilities are 'P[X <= x]', otherwise, 'P[X > x]'., Default: FALSE |
CI |
confidence interval coverage takes value from 0 to 1, Default: 0.95. |
digits |
Number of significant digits, Default: 4 |
Details
Data is entered as a data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df
Value
ANOVA table.
References
Hector, Andy, Stefanie Von Felten, and Bernhard Schmid. "Analysis of variance with unbalanced data: an update for ecology & evolution." Journal of animal ecology 79.2 (2010): 308-316.
Examples
#'
# See Tables 6 and 8 and from Fidler and Thompson (2001).
# The “eta2” and “omega2” CIs match those in Table 8.
# See “FT” dataset for Fidler and Thompson (2001) reference
# acquiring summary data
FT_sum <- extract_sum(FT, test = "uni", run = FALSE)
# univariate analysis on summary data
univariate(FT_sum, CI = 0.90, es_anova = "eta2", digits = 5)
univariate(FT_sum, CI = 0.90, es_anova = "omega2", digits = 5)
# Reproduces Table 2 from Shaw and Mitchell-Olds (1993) using their Table 1.
# See “SMO” dataset for Shaw and Mitchell-Olds (1993) reference
# Note that Table 2 residual df is incorrectly given as 6,
# but is correctly given as 7 in Hector et al. (2010)
# acquiring summary data
univ_SMO <- extract_sum(SMO, test = "uni", run = FALSE)
# univariate analysis on summary data
print(univariate(univ_SMO, type_anova = "I")[[1]])
print(univariate(univ_SMO, type_anova = "II"))
univariate(univ_SMO, type_anova = "III")